
2 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0  ©  2 0 0 1  I E E E

tasks efficiently. (Some systems are for en-
tertainment rather than task support, and
in such cases, task efficiency is of no con-
cern. We will not consider such systems in
this article.)

Many developers wonder whether there is
a systematic way to design a user interface.
How do we get from data models and use
cases to the actual interface? Two systematic
approaches have been around for a long time
in various versions: the data-oriented ap-
proach (easy to do with popular database
tools) and the task-oriented approach (dom-
inant in the field of human–computer inter-
action). Each approach has its strengths and
weaknesses. In this article, we show a new
approach called virtual windows that elimi-
nates many weaknesses of these two classic
approaches.

Two traditional approaches
The data-oriented approach starts with a

description of the data the system must
maintain, typically in the form of a data
model (a static class model). From this, de-
signers define a set of windows such that all
data is visible.1,2 The functions tend to be
standard functions for creating, updating,
and deleting data. The graphical design is
dominated by the built-in presentations the
database tool offers. Examples of this ap-
proach are simple applications made with
Microsoft Access or Oracle Forms.

This approach’s main problem is that it
doesn’t ensure efficient task support. We
have seen many data-oriented interfaces
where the user cannot get an overview of
the data necessary for important tasks.3

The task-oriented approach starts with a

focus
Virtual Windows: 
Linking User Tasks, Data Models, and
Interface Design

Soren Lauesen and Morten Borup Harning, Copenhagen Business School

The authors
show an
approach for
designing user
interfaces that
balances a good
overview of data
with efficient
task support,
and allows user
validation much
earlier than do
traditional 
usability tests.

U
ser interface design comprises three major activities: organizing
data into a set of windows or frames, defining functions that let
the user control the system, and designing the graphical appear-
ance of windows and functions. These design activities can build

on analysis results such as task analysis and data modeling, and they can in-
clude checking activities such as reviews and usability tests. The goal is to
create a system that is easy to learn, is easy to understand, and supports user

User Inter faces



list of user tasks (use cases) that the system
must support. Analysts break down each
task into a series of steps. From there, de-
signers define a window for each step.4,5 In
an extreme version, each window holds
only the input and output fields strictly nec-
essary to carry out the step. The user can
move to the next window and usually to the
previous one as well. Wizards (which are
popular in many modern interfaces) follow
this extreme approach. 

This approach’s main problem is that the
user never gets an overview of the data avail-
able. He or she only sees the data through a
“soda straw.” Furthermore, real-life tasks are
usually much more varied and complex than
the analyst assumes. Consequently, the system
supports only the most straightforward tasks
and not the variants. In some systems, only
straightforward tasks must be supported,
which is when the task-oriented approach is
excellent. Withdrawing cash from an ATM is
a good example. In more complex systems,
however, another approach is needed.

Why it works
The virtual-windows technique is an ap-

proach based on employing data and tasks
at the same time. Part of the approach is to
design and test the graphical appearance be-
fore the functions are defined.

A virtual window is a picture on an ide-
alized screen. With a PC application, think
of it as a GUI window on a large physical
screen. This window shows data but has no
buttons, menus, or other functions. For de-
vices with specialized displays, think of the
virtual window as a picture on a large dis-
play; for Web systems, think of it as a page
or frame. A complex application needs sev-
eral virtual windows.

The basic idea when composing a set of
virtual windows is this: Create as few vir-
tual windows as possible while ensuring
that all data is visible somewhere and that
important tasks need only a few windows.
Furthermore, design the graphical appear-
ance of the windows such that real-life data
will be shown conveniently and that users
can understand what the windows show. An
important part of the graphical design is to
decide whether data appears as text, curves,
dials, pictures, and so on.

Later, the designer develops the user in-
terface: He or she organizes the virtual win-

dows into physical windows or screens;
adds buttons, menus, and other functions;
and adds messages, help, and so on.

We have used the virtual-windows ap-
proach for several years in teaching and
projects such as special devices and busi-
ness, Web, and client-server systems. Com-
pared to user interfaces designed tradition-
ally, the ones based on virtual windows
appear to have several advantages:

• there are fewer windows,
• there is efficient task support (also for

task variants),
• users can validate the database, and
• users better understand the final system.

Virtual windows give fewer windows than
data-oriented approaches because we do not
create a window for each entity—the win-
dows group information according to user
needs. They also give fewer windows than in
task-oriented approaches because we can
reuse windows across several tasks.

Not surprisingly, the virtual-windows ap-
proach provides more efficient task support
than the data-oriented approach because
the windows are designed for the tasks.
Blindly applied, the virtual windows might
support straightforward tasks a bit less effi-
ciently than the task-oriented approach, but
they can better handle task variants. Less
blindly applied, the virtual windows let the
designer support important tasks as effi-
ciently as the task-oriented approach.

The validation of database contents is the
result of the early graphical design with re-
alistic data. Furthermore, all data is shown
in a work context, resulting in the user re-
lating to the data more vividly. 

Users better understand the final system
because fewer windows reduce the user’s
mental load.

In practice, we also test if users understand
the virtual windows. They often don’t under-
stand the first version, but because the win-
dows are made early—much earlier than pa-
per mockups of the user interface—we can
afford to make radical design changes. Be-
cause the later physical windows resemble the
virtual windows, chances are higher that
users will also understand the final interface.

Understandable windows allow the users
to form a better mental model of not only
the data in the system, but also the system’s

J u l y / A u g u s t  2 0 0 1 I E E E  S O F T W A R E 3

The virtual-
windows

technique is an
approach based

on employing
data and tasks

at the same
time.



functions. Figure 1 illustrates the principle.
The user sees or enters some data on the
screen. When the system removes the win-
dow or changes to another window, the user
does not assume that the data disappears
but that it is stored somehow. The figure
shows this stored data at the back of the
system. The user thus forms a mental model
of what is stored and how it relates to other
stored data, based on the way the data ap-
pears on the screen. This psychological
mechanism corresponds to Piaget’s law of
object constancy: When we see an object
and it becomes hidden, we automatically as-
sume that it still exists somewhere. 

The figure also suggests that the user un-
derstands the functions in terms of the
stored data and its relation to what is on the
screen. Many users comment that the pic-
ture reflects quite well how they imagine the
system.

How to do it
Let’s examine how to use virtual win-

dows to design a user interface for a hotel
booking system.

Make a task list (use cases)
The first step is to list the tasks (use

cases) the system must support. This step is
part of many analysis approaches and not
something special for the virtual-window
approach.4–6

Figure 2 shows a simple task list for the
hotel example. The list shows that our sys-
tem supports booking, checking in and out,
keeping track of breakfast servings, and so
on. Implicitly, the list delimits the system’s
scope. Our list shows, for instance, that the
simple hotel system does not support areas
such as accounting, personnel, and pur-
chases.

Make a data model
In most cases, the virtual-window ap-

proach benefits from a traditional data model
(static object model), which is part of many
analysis approaches.7,8 The data model speci-
fies the data to be stored long-term in the
computer. Usually, short-term data such as
search criteria are not specified in the data
model.

A data model is an excellent tool for de-
velopers but is hard to understand for even
expert users. Figure 2 shows the data model

4 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 1

Virtual windows
What the computer remembers

Functional model
What the commands do

Physical windows
What the user sees

Get Order
John F. SmithFind

Cancel

Cancel
order

Find
orders

Get
guest

OrderGuest

Figure 1. The user forms a mental model of data and functions
in the system from what he or she sees on the screen. The
virtual windows are a consistent basis for a mental model.

Task list
  • Book guest
  • Checkin booked
  • Checkin unbooked

• Checkout
• Change room
• Enter breakfast list

price,
name

date, #persons, booked|occupied

count, date

room#, bath, #beds, price1, price2

Service
type

ServiceGuest

Room
state

Room

Name, address,
passport, pay method

Figure 2. The hotel
domain and its for-
malization as a data
model and a list of
user tasks.



for the hotel example. The data model
shows that the hotel system must keep track
of guests (one record per guest). To shorten
the example, we simplified the system a bit
and assumed that each guest only had one
stay at the hotel—the system doesn’t track
regular customers.

The system must also record various serv-
ices to be paid by the guests such as breakfast
servings. There are several types of service.
According to the data model, each guest
might receive several services, and each serv-
ice is of exactly one ServiceType. 

The system must keep track of rooms.
Each room has a list of RoomStates, one for
each date in the period of interest. The
room’s state at any given day can be free or
booked. A guest’s stay relates to one or
more RoomStates corresponding to the
dates where he or she has booked a room or
actually occupies it.

In most hotel systems, rooms are booked
by room type (single or double) while
check-in is by room number. To simplify the
example, we assume that rooms are booked
by room number, too.

Outline the virtual windows
In this step, we outline virtual windows,

looking at the tasks one by one. For each
task we identify the data to be seen by the
user and group them into a few virtual win-
dows. The important trick, however, is to
reuse or expand previous windows rather
than design new ones for each task.

The step uses a few guidelines. To explain
them, we distinguish between a window
type and a window instance. Think of the
window type as a template and the window
instance as a window filled in with data. As
an example, a guest window with data for a
specific guest is a window instance, while all
the guest windows use the same window
type. Here are those guidelines:

• Few window types. Keep the total num-
ber of window templates small. (It is
easier to grasp fewer windows as a men-
tal model.)

• Few window instances per task. For each
task, the user should access few window
instances. (This improves task support.)

• Data in one window only. Avoid having
the user enter the same data item
through several window instances.

Preferably, each data item should also
be shown in only one window instance.
(Seeing the same data item in several
windows makes the mental model more
complex. Being able to enter it at several
places causes confusion about the en-
try’s effect.)

• Virtual windows close to final physical
windows. Although we assume a large
physical screen, the virtual windows
shouldn’t be too far from what is re-
alistic in the final interface. (Otherwise,
the user will not generate a mental
model close to the virtual windows.)

These are not rules set in stone. In many
cases they conflict, forcing us to strike a
balance between task efficiency and ease of
understanding (we show examples later).
The rules cover only the high-level compo-
sition of screens. They do not pretend to
cover graphical design for the individual
windows.

Windows for booking. We will use these guide-
lines for the hotel system. Let’s start with a
frequent task, the booking task. Which data
should the user see to book a guest? He or
she must see which rooms are vacant in the
period concerned, what their prices are, and
so forth. The user also must record the book-
ing and the name, address, and other guest
information. 

Figure 3 shows how this data could be al-
located to two virtual windows, Guest and
Rooms. The pile of completed Guest win-
dows suggests that we have recorded several
guests. We have only one Rooms window,
because all rooms are shown there with
their occupation status for a period of days.
This is also where the user selects free
rooms for a guest.

Why do we need two virtual windows?
Doesn’t it violate the principle of few window
types? Apparently, yes, but if we had only one

J u l y / A u g u s t  2 0 0 1 I E E E  S O F T W A R E 5

Guest
name, address
period
booked rooms

Book
Check-in
Change room

bednights, price
servings, price

Checkout

Breakfast list
date
room#, type, servings
...

Rooms
prices, bath
status, date

Enter breakfast list

Tasks Virtual windows

Figure 3. Virtual win-
dows in outline ver-
sion. A few windows
cover all data, and
each task needs only
a few windows.



type, the room occupation status would ap-
pear in all the guest windows, violating the
“data in one window only” guideline. This
kind of conflict is common and is not a result
of the virtual-window approach—the ap-
proach just reveals the conflicting demands.

Although we need two virtual windows
for the booking task, we might later choose
to show them together on the same physical
screen—for instance, as two physical win-
dows or two frames in a single physical
page. This is a matter of detailed dialog de-
sign, to be handled later.

Check-in, change room. Next, let’s consider
check-in. Fortunately, the same two virtual
windows suffice. If the guest hasn’t booked in
advance, the procedure is much the same as
for booking, except that the room becomes
occupied rather than booked. If the guest has
booked, we just need to find the guest in the
pile of guest forms. We need some search cri-
teria to support that, but again, we delay that
to detailed dialog design.

Room changes use the same two win-
dows: one for the customer who wants to
change and one to see free rooms.

Checkout. When checking out, the reception-
ist needs some more data. He or she must
see how many nights the guest stayed, what
services he or she received, the prices, and
the total. It is useful to verify the data with
the guest before printing the bill. 

Where do we put these data? In a new vir-
tual window? No, because that would vio-
late the “few window types” guideline. In-
stead, we extend the guest window as in
Figure 3. Whether we want to always show
the extensions on the physical window is a
matter of later dialog design. But when we
show them, the graphical look should clearly
indicate that this is an extension of the guest
data—for instance, it might be shown in the
same frame as the other guest data. 

Record services. The last task on our list is
recording services such as breakfast serv-
ings. In principle, we don’t need a new vir-
tual window for this—the receptionist could
simply find the guest window and somehow
record the service there.

However, in many hotels, waiters record
breakfast servings on a list with preprinted
room numbers. The waiter brings it to the

receptionist, who enters the data. The sys-
tem could handle that with one window in-
stance per room, using a special function
that scans through guests in room order.
However, this would violate the “few win-
dow instances per task” guideline.

Figure 3 shows another solution, a vir-
tual window that holds a breakfast list. This
solution is important for task support, al-
though it violates the “data in one window
only” guideline, because breakfast servings
are also shown in the guest windows. The
system is now conceptually more complex
because the user has to understand the rela-
tion between the guest and breakfast win-
dows. For instance, the user might worry
whether the system keeps both of them up-
dated or whether he or she has to do some-
thing to have the latest breakfast list trans-
ferred to guest windows.

This is a quite serious design conflict be-
tween task efficiency and ease of under-
standing. It is important to test whether
users understand the suggested solution
properly and, if necessary, to supply ade-
quate guidance in the windows.

Supplementary techniques. In larger systems,
defining windows based only on the guide-
lines listed earlier can be difficult. We use
supplementary techniques such as defining
larger chunks of data than the simple ob-
jects in the data model,9 setting up a matrix
with the relation between tasks and the nec-
essary data for the task,10 and defining sev-
eral virtual-window models by using differ-
ent tasks as the starting point.

Detail the graphics and populate windows
In this step, we make a detailed graphical

design of the virtual windows and fill in the
windows with realistic data. Still, we don’t
add dialog functions such as push buttons
or menus—that is left to dialog design.

Many windows are rather straightfor-
ward to design, and standard GUI controls
suffice. This is the case with the guest win-
dow and the breakfast list. 

Other windows must give a good
overview of a lot of complex data, and they
are difficult to design. This is the case with
the room window—it’s easy to show the
RoomStates as a simple list of records, but
that doesn’t give the necessary overview.
Our solution uses a spreadsheet-like display

It is important
to test whether

users
understand the

suggested
solution

properly.

6 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 1



with mnemonic codes for room occupation
as in Figure 4. It is somewhat complex to
implement on most GUI platforms. 

Showing complex data comprehensively is
a relatively unexplored area.11,12 However,
virtual windows are excellent for experi-
menting with advanced presentation forms.

Show realistic and extreme data. It is very im-
portant to test the design by filling in the win-
dows with realistic data, as in Figure 4 (abbre-
viated here for space reasons). We also show a
complex, but slightly unusual, situation: a sin-
gle guest checks into a room and later be-
comes two guests, who move into a double
room. The virtual window shows that, con-
ceptually, this is one stay and one guest.

Apart from filling the windows with ordi-
nary data, it is useful to try filling them with
extreme, but realistic, data, which often re-
veals the need to modify the design. In the
example, extreme data for a guest window
include cases where a single guest books
rooms for a conference with scores of rooms
or where the guest stays for a very long pe-
riod. Users might need presentation forms
with a better overview in such situations.

Reuse old windows or forms. If the old system
uses some forms or screens already, should
we use them in the new system? It will ease
learning the new system, but it might coun-
teract designs with better task support. In
the hotel system, for instance, the virtual
guest window resembles an invoice, thus
helping the novice. However, if we want a
good overview for a guest who books scores
of rooms, another presentation might be ad-
vantageous.

Comparison with traditional approaches. If we
had used a traditional data-oriented ap-
proach, what kind of physical windows
would we have seen? Most likely, the serv-
ice-charge window would look much the
same, because it corresponds closely to the
service-type table in the database. However,
the guest window would probably become
three windows: one with data from the guest
record (name, address, and so on), one with
the room lines for a specific guest (based on
the room state and the room table), and one
with the service lines for the guest. (We have
seen such solutions in several commercial
Enterprise Resource Planning (ERP) prod-

ucts.) The rooms window would probably
become a list of room states for a specific
date, corresponding to one column of the
virtual window. Finally, the breakfast win-
dow might not be there at all, because it is
not necessary from a data point of view.

If we use a task-oriented approach, the
user first must select a task: book, check-in,
and so on. For the book task, the user might
be guided first through one window to enter
the desired room type and stay period, next
through a window to select available rooms
in that period, then through a window to
enter the guest name and address, and even-
tually through a confirmation window. The
windows for another task (such as room
change) might look very different.

Check the design
At this stage the design artifacts are a

task list, a set of virtual windows, and pos-
sibly a data model. They overlap consider-
ably, which lets us check for completeness
and consistency. Here are some useful
checks and tests:

Check virtual windows against the data model.
Check that all data in the virtual windows
exist in the data model or can be derived
from it.

CRUD Check. CRUD stands for create, read,
update, and delete. Check that it is possible
to create, read, and so on all data through
some virtual window. Otherwise a window
might be missing—and probably a task.
(This is a check for oversights—some data
might be imported from other systems and
thus need no manual update.)

J u l y / A u g u s t  2 0 0 1 I E E E  S O F T W A R E 7

Guest

Name: John Simpson
Address: 456 Orange Grove

Victoria 3745
Payment Visa

Stay#: 714

Item
7/8 Room 12. sgl 1 600
8/8 Breakf. rest 1 40
8/8 Room 11, dbl 2 800
9/8 Breakf. room 2 120
9/8 Room11, dbl 2 800

# pers

Rooms 7/8 8/8 9/8 10/8
11 Double Bath 800 600  O B
12 Single Toil 600 O O B B
13 Double Toil 600 500  B B B

Service charges
Breakf. rest. 40
Breakf. room 60

Breakfast 9/8

In In
R# rest room
11 2
12 1
13 1 1

Figure 4. Detailed vir-
tual windows that
use graphical design
and are filled in with
realistic data.



If we check the hotel system, we should
notice that service types and their prices can-
not be seen in a way where changing them or
creating new services makes sense. The solu-
tion is to add a new virtual window to show
the list of service types and their prices
(shown in Figure 4 as Service charges). We
also lack at least one task that uses this win-
dow. We might call it Maintain Service List,
and we should add it to the task list because
it is useful for later checking and testing.

Walk through all tasks. Take the tasks one by
one and walk through them—manually sim-
ulate how to perform each task by means of
the virtual windows. As part of this, you
might write down the functions needed in
each virtual window.

Understandability test with users. An in-
depth review of a data model, even with ex-
pert users, is rarely possible. They might ac-
cept the model, but they rarely understand it
fully. With virtual windows, reviews are
fruitful because of the detailed graphics and
the realistic data.

Show the virtual windows one by one to a
user. Ask the user what he or she believes the
windows show, whether they show a realistic
situation, whether he or she could imagine a
more complex situation that would be hard
to show on the screen, and whether some
data is missing. Perform the review with ex-
pert users and ordinary users separately—
they reveal different kinds of problems.

For example, in the hotel case, reviews
with experts revealed that seasonal prices
were missing. Reviews with ordinary users
revealed that the mnemonic marking of
room state was not obvious. Some users be-
lieved that O for occupied meant zero,
meaning that the room was free.

You can also ask the user to walk
through some tasks. Ask which window he
or she would use, what data he or she
would enter, what functions he or she
would expect to switch to other windows,
and so forth. The whole exercise can get
quite close to a real usability test,13,14 al-
though the windows contain no functions
(menus, buttons, and so on) at this stage.

Design the dialog
In this step, we design the dialog in detail.

This is not part of the virtual-windows ap-

proach, but the virtual windows are the ba-
sis.15 Detailed design involves several things:

• Organizing the physical windows. The
basic part of this is to adjust virtual win-
dows to physical window size by split-
ting them, using scroll bars, tabs, and so
forth. In some cases, two or more vir-
tual windows might be combined into
one physical window or screen.

• Adding temporary dialog data such as
search criteria and dialog boxes. The ear-
lier walkthrough and understandability
tests are good sources.

• Adding functions to navigate between
windows, perform domain-oriented
functions, and so on. Again, the walk-
through and understandability tests are
good sources. CRUD checks and state-
transition diagrams might reveal miss-
ing functions.

• Adding error messages.
• Adding help and other guidance.

The design should produce a more or less
functional prototype. An important purpose
of the prototype is usability testing, which can
effectively reveal usability problems in the de-
sign.14 Although early testing of the virtual
windows can reveal many problems, new
problems creep in during detailed design.

Experience
Over the last six years, we have gathered

much experience with the virtual-windows ap-
proach in real projects and in courses for de-
signers. Here are some of our observations.

Need for early graphical design
In early versions of the approach, we did-

n’t split virtual-window design into an out-
line step and a detail step.15 We observed
that some design teams produced excellent
user interfaces that scored high during
usability tests, while other teams produced
bad designs. Furthermore, excellent designs
were produced much faster than bad de-
signs. Why?

Gradually we realized that the main dif-
ference between good and bad teams was the
amount of detail they put into the virtual
windows. Both groups could quickly pro-
duce the outline version. The bad teams then
continued with dialog design, but when they
designed the actual user interface, everything

An important
purpose of the
prototype is

usability
testing, which
can effectively
reveal usability
problems in the

design.

8 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 1



collapsed. The outline could not become use-
ful physical windows, fields could not con-
tain what they were supposed to, getting an
overview of data was impossible, and so on.
The teams had to redesign everything, which
resulted in a mess.

The good teams spent more effort design-
ing the graphical details of the virtual win-
dows, filling them with realistic data, and so
forth. As part of that, they often modified the
outline and grouped data in other ways. These
changes were easy to handle at that time, and
from then on, things went smoothly. Dialog
functions were added, and the physical win-
dow design was largely a matter of cutting and
pasting parts of the virtual windows.

Adding functions too early
We have observed that designers tend to

add buttons to the virtual windows from the
very beginning. This goes against the idea of
dealing with only data at that stage and de-
laying functions to later steps. The designers
cannot, however, resist the temptation to put
that check-in button on the guest window.

We have learned to accept that. It doesn’t
really harm anything as long as the design-
ers don’t focus too much on functions at
this stage. Maybe it actually makes the win-
dows more understandable because a but-
ton suggests how to use the window. For in-
stance, we have noticed that users better
understand that something is a long list if
there is a scroll bar. 

Forgetting the virtual windows
We have observed many cases where de-

signers made excellent virtual windows, only
to forget them when designing the physical
windows. The physical design then became
driven by available GUI controls and the be-
lief that traditional windows were adequate.
The concern for understandability and effi-
cient task support disappeared, and the final
user interface became a disaster.

Two things can help overcome this: en-
suring that the window designers know the
GUI platform to be used (so that they don’t
propose unrealistic designs) and ensuring
that quality assurance includes tracing from
the virtual to the final windows.

Examples of projects
Virtual windows stood its first real-life

test in 1993 in a project for booking and

scheduling classrooms in a university. Class-
rooms were the most critical resource at
that time, and the existing system was en-
tirely manual and an organizational disas-
ter. The university had attempted a com-
puter system, but owing to its heavily
data-oriented design, it was not successful.

We designed a new system by means of
virtual windows. It became a success and is
still the way all room allocation is handled.
The database has 20 entity types and 2 mil-
lion records; there are 150 rooms in 12
buildings and 7,000 courses; and there are
two highly complex, 10 moderately com-
plex, and eight simple windows to view. 

A recent example is the redesign of a
Web-based job match system where appli-
cants could record their qualifications and
companies announce jobs. Several such sys-
tems exist, but the one in question was the
easiest and most widely used. Still, it at-
tracted few users.

In the old design the user had to go
through 14 screens to record qualifications.
Usability tests showed that most users gave
up in the middle of this. The designers used
virtual windows to redesign the application,
and the result was four screens to record
qualifications. Usability tests showed that
all users completed the task (except for one,
who turned out to be drunk). 

M any of our students and clients
have successfully picked up the
virtual-windows approach. It has

become the natural way to design user in-
terfaces—for us as well as for them. Over
the years they have encouraged us to pro-
mote the approach more widely. Until now,
however, we have never taken the time to do
it, except at a few conferences. We refine the
approach a bit every now and then, but ba-
sically consider it finished. We have gradu-
ally included the approach into more com-
prehensive methods for user interface design
and requirements engineering, but the meth-
ods are not yet published in English.

References
1. R. Baskerville, “Semantic Database Prototypes,” J. In-

formation Systems, vol. 3, no. 2, Apr. 1993, pp.
119–144.

J u l y / A u g u s t  2 0 0 1 I E E E  S O F T W A R E 9

Many of our
students and
clients have
successfully
picked up the

virtual-
windows
approach.



2. C. Janssen, A. Weisbecker, and J. Ziegler, “Generating
User Interfaces from Data Models and Dialogue Net
Specifications,” Proc. Int’l Conf. Computer–Human In-
teraction, ACM Press, New York, 1993, pp. 418–423.

3. S. Lauesen, “Real-Life Object-Oriented Systems,” IEEE
Software, vol. 15, no. 2, Mar./Apr. 1998, pp. 76–83.

4. K.Y. Lim and J.B. Long, The MUSE Method for Us-
ability Engineering, Cambridge Univ. Press, Cambridge,
UK, 1994.

5. A.G. Sutcliffe, Human–Computer Interface Design,
Macmillan Press, London, 1995.

6. A. Cockburn, “Structuring Use Cases with Goals,” J.
Object Oriented Programming, Sept./Oct., 1997, pp.
35-40. 

7. P. Chen, “The Entity-Relationship Model: Toward a
Unified View of Data,” ACM Trans. Database Systems,
vol. 1, no. 1, Mar. 1976, pp. 9–36.

8. E. Yourdon, Modern Structured Analysis, Prentice-Hall,
New York, 1989.

9. M.B. Harning, “An Approach to Structured Display
Design: Coping with Conceptual Complexity,” Proc.
2nd Int’l Workshop Computer-Aided Design of User
Interfaces, Presses Universitaires de Namur, Namur,
France, 1996, pp. 121–138.

10. S. Lauesen, M.B. Harning, and C. Gronning, “Screen
Design for Task Efficiency and System Understanding,”
Proc. Australian Conf. Computer–Human Interaction
(OZCHI 94), CHISIG, Downer, Australia, 1994, pp.
271–276.

11. E. Tufte, Envisioning Information, Graphics Press,
Cheshire, Conn.,1990.

12. L. Tweedie, “Interactive Visualisation Artifacts: How
Can Abstraction Inform Design?” Proc. Human–Com-
puter Interaction (HCI 95), Cambridge University Press,
1995, pp. 247–266. 

13. J.S. Dumas and J.C. Redish, A Practical Guide to Us-
ability Testing, Ablex, Westport, Conn., 1993.

14. A.H. Jorgensen, “Thinking-Aloud in User Interface De-
sign: A Method Promoting Cognitive Ergonomics,” Er-
gonomics, vol. 33, no. 4, 1990, pp. 501–507. 

15. S. Lauesen and M.B. Harning, ”Dialogue Design
through Modified Dataflow and Data Modeling,” Proc.
Human–Computer Interaction, Springer-Verlag, New
York, 1993, pp. 172–183.

1 0 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 1

About the Authors

Soren Lauesen is a professor at the IT University of Copenhagen. He has worked in the
IT industry for 20 years and at the Copenhagen Business School for 15. His research interests
include human–computer interaction, requirements specification, object-oriented design, qual-
ity assurance, systems development, marketing and product development, and cooperation be-
tween research and industry. He is a member of the Danish Academy of Technical Sciences and
the Danish Data Association. Contact him at the IT Univ. of Copenhagen, Glentevej 67, DK-
2400 Copenhagen, NV; slauesen@it-c.dk.

Morten Borup Harning is a chief design officer at Open Business Innovation. His re-
search interests include user interface design frameworks, design methods and design nota-
tions, user interface design tools, User Interface Management Systems, and human–computer
interaction in general. He received his PhD from the Copenhagen Business School. He is a
member of IFIP WG 2.7/13.4 on User Interface Engineering and chairs SIGGHI.dk, the Danish
Special Interest Group on HCI. Contact him at Dialogical, Inavej 30, DK-3500, Denmark; 
harning@dialogical.dk.


